

Secondary organic aerosol formation in a smog chamber and its link to source apportionment in the real atmosphere

Urs Baltensperger Paul Scherrer Institut, Villigen, Switzerland

9th Int. Conf. on Carbonaceous Particles in the Atmosphere Berkeley, CA, August 12-14, 2008

Paul Scherrer Institut • 5232 Villigen PSI

PAUL SCHERRER INSTITUT Worldwide AMS measurements of the chemical composition: the importance of organic aerosol

Zhang et al., GRL 2007

LABOR FUR ATMOSPHÄREN-

CHEMIE

Paul Scherrer Institut • 5232 Villigen PSI

Sources of that organic aerosol? Which fraction is primary, which secondary?

- Primary particles: directly emitted to the atmosphere
- Secondary particles: formed in the atmosphere by condensation (nucleation and growth) after chemical transformation

Traditional ways of determining primary and secondary organic aerosol (POA and SOA) A: OC/EC ratio

PAUL SCHERRER INSTITUT

But: SOA may be formed nearly instantaneously; Example: Wood combustion aerosol shows immediate SOA formation after turning on the lights in a chamber

Paul Scherrer Institut • 5232 Villigen PSI

Traditional ways of determining primary and secondary organic aerosol (POA and SOA) B: Tracers

$$C_i = \sum_k \alpha_{i,k} S_k + e_i$$

Critical issues

- Atmospheric stability
- Source completeness
- Representative source profiles
- Analytical accuracy and precision

Subramanian et al., 2005

Dilution results in decrease of semivolatile OC in aerosol → much smaller primary fraction than expected from tracer ratios

An alternative approach: Use the full (organic) spectra of an aerosol mass spectrometer to retrieve source contributions

PAUL SCHERRER INSTITUT

Positive Matrix Factorization (PMF) of full OM spectrum for source identification and attribution

PAUL SCHERRER INSTITUT

The result of PMF

6

LABOR FÜR IOSPHÄREN-CHEMIE

=

_

OOA-I and OOA-II now found at many other sites

- Zurich summer
- Pittsburgh (left)
- Japan
- Mexico City
- UK
- Jungfraujoch
- many other sites in Switzerland
- not in Zurich winter (too little temperature variation)

Three sources for Pittsburgh Ulbrich et al., ACPD (2008)

How does this OOA compare to secondary organic aerosol?

The PSI smog chamber

Paul Scherrer Institut • 5232 Villigen PSI

AMS m/z 44 gets close to ambient only at low precursor concentration

Smog chamber SOA vs. ambient OOA I & OOA II

LABOR FÜR ATMOSPHÄREN-CHEMIE

Paul Scherrer Institut • 5232 Villigen PSI

Smog chamber SOA from α -pinene vs. ambient OOA I & OOA II from Zurich

Lower VOC concentration = lower SOA mass = more oxidized and less volatile SOA Higher VOC concentration = higher SOA mass = less oxidized and more volatile SOA Alfarra et al., submitted

What does AMS m/z 44 mean at all?

The link between m/z44 and the O/C ratio

Aiken et al., ES&T 2008

m/z44 is also correlated with hygroscopic growth

Duplissy et al., in preparation

Conclusions

- PMF of AMS data provides a highly suitable means to identify sources of organic aerosol; both primary and secondary
- Smog chamber results are representative of the real atmosphere if you do it right (low concentrations)
- AMS features can be related to fundamental chemical signatures of the aerosol

Thank you for your attention

Acknowledgments People: ETHZ: M. Kalberer Empa: V. Lanz, C. Hüglin, S. Weimer Univ Colorado Boulder: Jose Jimenez and his group

PSI: R. Alfarra, R. Chirico, P. DeCarlo, J. Dommen, J. Duplissy, K. Gäggeler, M. Gysel, M. Heringa, A. Metzger, D. Paulsen, A. Prevot, R. Richter, S. Sjögren, T. Tritscher, B. Verheggen, G. Wehrle, E. Weingartner, ...

Funding:

- Swiss National Science Foundation
- BAFU (EPA Switzerland)
- EC projects ACCENT, EUCAARI, EUROCHAMP, POLYSOA
- ESF project INTROP

http://www.psi.ch/lac

The use of a Multilinear Engine (ME-2) instead of PMF

a-value = 0: profile fixed a-value = 1: intensities can evolve from 0 to 200% Additional constraints by other methods (e.g. radiocarbon analysis): a-value cannot be higher than 0.8 (otherwise HOA overestimated (fossil SOA negative) Lanz et al., ES&T, 2008