

MORPHOLOGY AND EFFECTIVE REFRACTIVE INDICES OF AEROSOLS EMITTED FROM HIGH-MOISTURE-CONTENT BIOMASS COMBUSTION

Rajan K. Chakrabarty, ^{1,2,*} Lung-Wen Antony Chen, ² Hans Moosmüller, ² Claudio Mazzoleni, ³ Petr Chylek, ³ Manvendra Dubey, ³ W.Patrick Arnott, ⁴ Kristin Lewis, ⁴ and Wei Min Hao⁵

¹ Chemical Physics Program, University of Nevada Reno, Reno, Nevada – 89557, USA

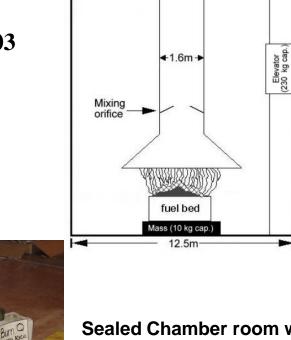
² Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada – 89512, USA

³ Geochemistry and Climate Focus Team, Los Alamos National Laboratory, New Mexico – 87545, USA

⁴ Department of Physics, University of Nevada Reno, Reno, Nevada -89557, USA

⁵ USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, Montana, USA.

USFS, Missoula, MT, USA



17m

Fire Pit with Hood, Stack to study change in particle properties with phase of fire and time

11/16/2003- 11/23/2003 5/25/2006-6/10/2006

Sampling platform (1800 kg cap.)

Exhaust

Chamber Burn

Sealed Chamber room with approx. volume of 3,300 m³ to study evolution of particle in long Residence time

Wildland fire emissions impact air quality (PM, CO, NO_x, O₃), visibility, and climate

- Incomplete combustion Results in Gases and Carbonaceous
 Particles
- Carbonaceous Particles consist mostly of Elemental Carbon (EC) and Organic Carbon (OC)
- EC is Black (Scattering & Absorbing) and Thermally Refractive
- OC is Not Strongly Light Absorbing (Only Scattering) and Semi-Volatile
- Important Source of Brown Carbon? (Absorption highly skewed towards UV)

Dynamic Nature of Fires: Combustion Phases

Flaming Phase: hot and dark; high combustion efficiency

- Optical Properties
- Size Distribution
- Emission Factors

Waterfall Fire (Near Carson City, NV; 14-July-2004)

Smoldering Phase: not-so-hot and white; low combustion efficiency

Phase Specific

Wet Fuels: (Contain high fuel moisture)

Montana Grass

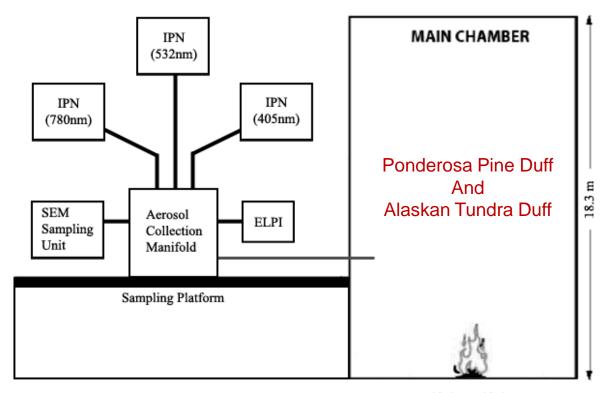
Alaskan Tundra Cores

Smoldering phase of combustion:

Smoldering is a slow, low-temperature, flameless form of combustion, sustained by the heat evolved when oxygen diffuse to the surface and directly attacks the surface of a condensed-phase fuel.

FINE PARTICLES

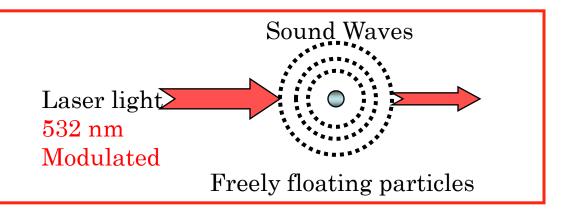
Potential Mechanism of


< 1.0 µm > 1.0 µm ~200 °C coagulation and condensation (II)condensation of condensation of alkali ~600 °C alkali salts chlorides Mechanisms for smoldering (low-temperature oxidation oxidation is uncertain)

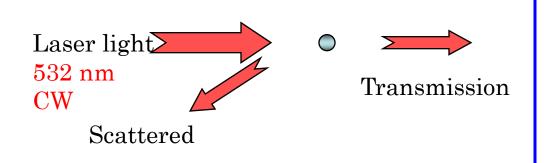
Nothing the particle emission is uncertain. (1) O₂ rich flame λ>1 ~1400 °C O₂ lean flame λ<1 ~800-1200 °C mineral **FUEL BED** inclusion

C,O,H,N,S,CI,Si,AI,Ca,Fe,K,Mg,Mn,Na,P,Ti,Zn,...

COARSE PARTICLES

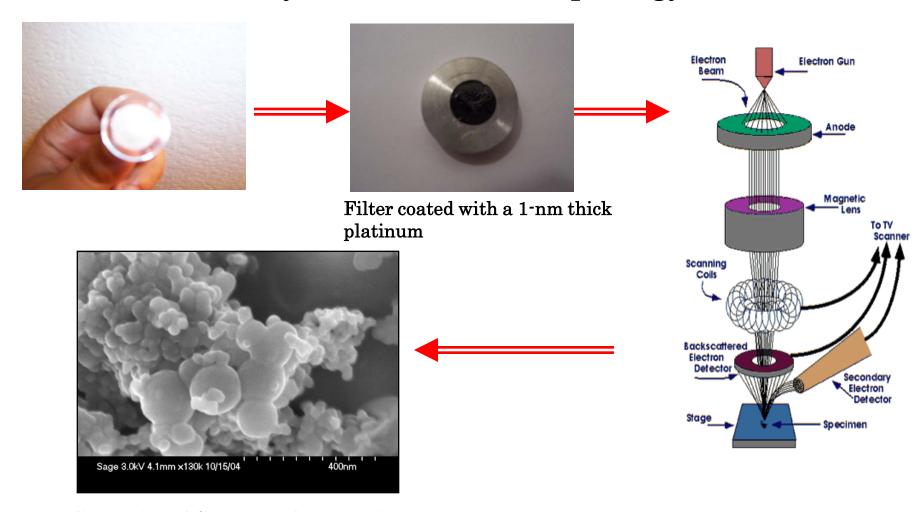

13.4 m x 13.4 m

Chamber combustion facility of the United States Department of Agriculture Forest Service Fire Sciences Laboratory (FSL)

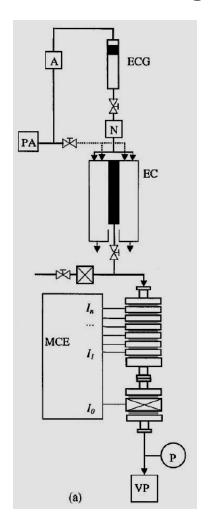


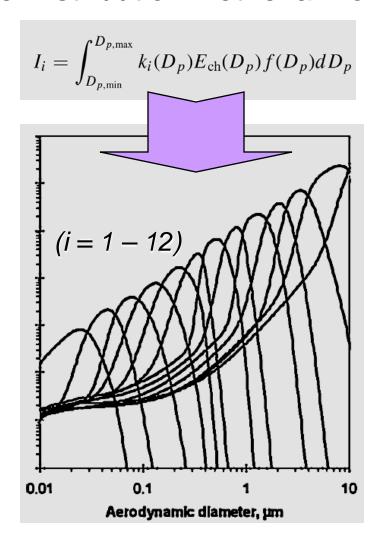
Integrated Photoacoustic Nephelometer

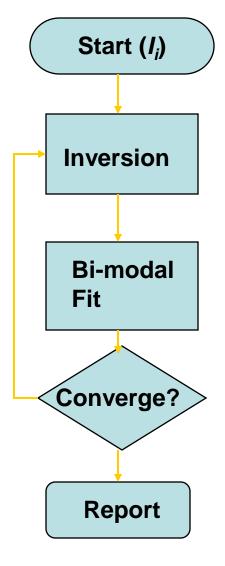
Absorption
Coefficient
(Photo Acoustic
Spectrometer)



Extinction – Scattering Coefficient (Nephelometer)

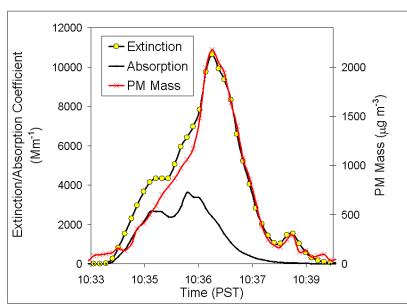

SEM analysis for aerosol morphology

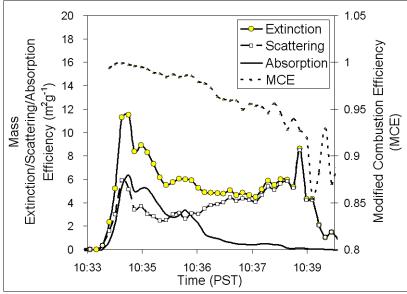



2-dimensional Structural properties

Size Distribution Retrieval from ELPI

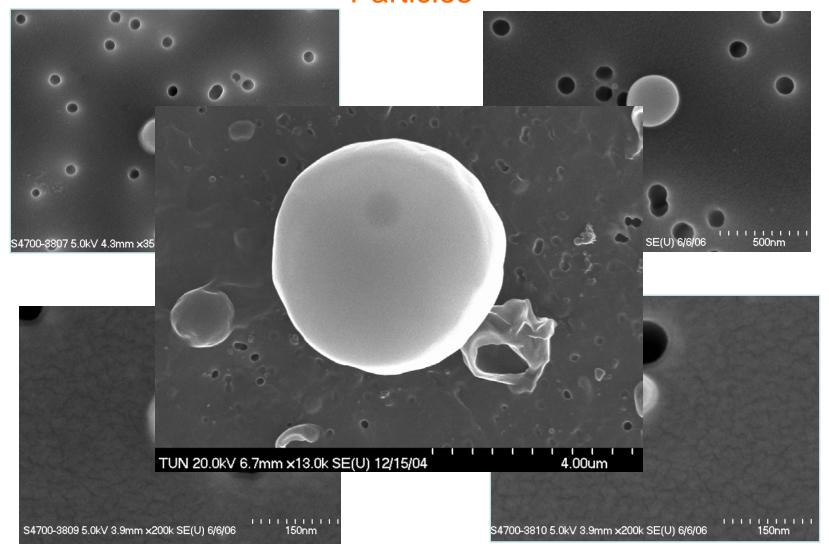
Marjamäki et al. (2005, AS&T)

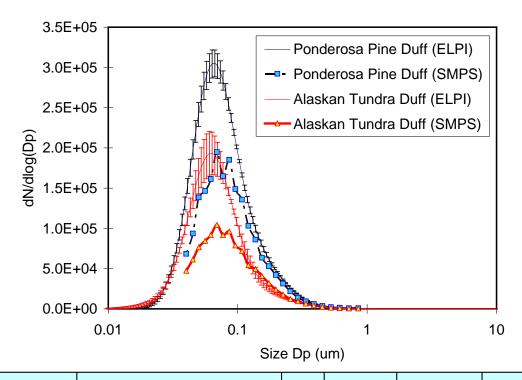

Particle Optical Properties Change with Time and the Combustion Phase


Even in chamber burns one observes changes in size distribution with time

For this experiment, all instruments were operated in synchronization for:

2 minutes - Ponderosa Pine Duff


4 minutes – Alaskan Tundra Duff



Near-Spherical Tar Balls Dominate in the Two Burn Particles

Two Pure Smoldering Combustion (Alaskan Tundra & Ponderosa Pine Duff)

λ	R	R	Refractiv		2	R	R	Refractiv		
	$\mathbf{B}_{\mathrm{sca}}$	$\mathbf{B}_{\mathbf{abs}}$	Real	Imag	٨	$\mathbf{B}_{\mathrm{sca}}$	$\mathbf{B}_{\mathbf{abs}}$	Real	Imag	
405	1134	51.6	Tun	dra	405	1921	141.6	P	ine	
532	893	9.25	ran	Gra	532	1544	43.5			
870	876.5	3.5			870	1641	15.85			

Can we use the Lorentz Mie theory?

- •The near-spherical shape of the particles justifies the use of Mie-theory.
- •The Mie code was used for the inverse retrieval of the complex index of refraction (similar to Guyon et al. 2003)
- •Using the measured particle binned number size distribution, the Mie code first takes the refractive index of water (1.33–0i) and calculates the corresponding scattering and absorption coefficients.
- •These values are then compared to the time-averaged values of the measured scattering and absorption coefficients and the real and imaginary part of the refractive index are then increased stepwise until the calculated and measured optical coefficients agree to within 0.5%.

Optical Properties

Fuel Name	$B_{sca} & B_{abs} \ (Mm^{-1}) \ 405nm$	$B_{sca} & B_{abs}$ (Mm^{-1}) $532nm$	$B_{sca} & B_{abs} \ (Mm^{-1}) \ 780nm$	Refractive Index 405 nm	Refractive Index 532nm	Refractive Index 780 nm
Ponderosa Pine Duff	N/A	1524 & 63.2	721.6 & 21	N/A	1.73 + .0031i	1.59 + .0019i
Alaskan Duff	1150 & 56	906.5 & 9.7	467 & 3.9	1.83 + 0.0076i	1.75 + 0.0019i	1.60 + 0.0014i

Real Part: 1.83 (405nm) - 1.60 (780nm)

Imaginary Part: 0.0076 (405nm) - 0.0014 (780nm)

Absorption Angstrom Coeff: ~6.5 (405-532nm) and ~2.4 (532-780nm)

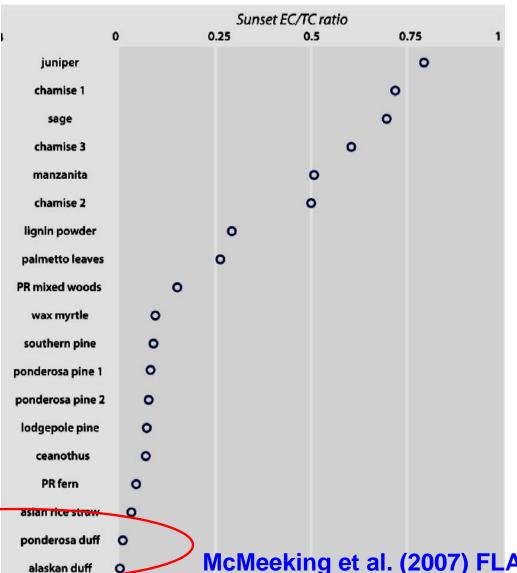
Single Scattering albedo: >0.90

Chakrabarty et al. 2008, to be submitted to GRL

Uncertainty in the Calculations

A sensitivity study was performed where uncertainty in the different individual parameters – scattering and absorption coefficient (~5), and the ELPI size retrieval (~15%) – were individually varied, and the so calculated refractive index was compared with the original one.

Using the method of quadrature sum of the individual errors, the measurement errors in the real part of the index of refraction were calculated to be around 4.1% and that in the imaginary part were approximately 13.6%.



	Absorption Angstrom Exponent (405 – 532 nm)	Real Refractive Index (532 nm)	Imaginary Refractive Index (532 nm)
Alaskan Duff	6.5	1.75	0.002
Ponderosa Duff	N/A	1.72	0.003
HULIS (Hoffer et al. 2006)	~7 (300-700nm)	~1.7	0.0016 – 0.0019
Soot/BC (Bond & Bergstrom, 2006)	0.9 - 1	1.5 – 2	0.4 – 1

Category 1	C/O	%sp²	PINI
Ponderosa Pine Needles	70/30	32	Desert Research Institute
Ponderosa Pine Duff	87/13	40	
Alaskan Tundra Core Duff	82/18	25	
Southern Pine Needles	69/31	44	STXM/NEXAFS
Ceanothus (I)	78/22	31	by Mary Gilles group
	Mean 77/23	Mean 34	at LBNL
Category 2			
Rice Straw (I)		49	Hopkins et
Puerto Rico Fern (dry) (I)	74/26	56	al. 2007 GRL
Puerto Rico Mixed Woods	80/20	60	
Palmetto (I)	77/23	48	
	Mean 77/23	Mean 53	
Category 3			
Chamise (I)	80/20	81	
Utah Juniper Foliage & Stick (I)	91/9	82	
Utah Sage Rabbit Brush (I)	84/16	86	
	Mean 85/15	Mean 83	
Soot Standard			1
Methane Soot	84/16	79	

EC/TC Ratio

Thermal Optical Measurements

McMeeking et al. (2007) FLAME (Do not cite)

Summary

- Optical properties of carbonaceous aerosol ("tar balls") emitted from the smoldering combustion of two high-moisture-content fuels Ponderosa Pine Duff and Alaskan Duff
- On average, the complex index of refraction of the particles ranged between 1.83 + 0.0076i (405nm) and 1.6 + 0.0014i (780nm).
- High angstrom coefficient of absorption (~6.5) was observed between wavelengths 405nm and 532 nm for these particles suggesting the possibility of HULIS as the primary aerosol component in tar balls.
- Significant fraction of these tar balls reside in the atmosphere might help partially explain for the up to now unexplained anomalously high fraction of light absorption observed in the troposphere

Acknowledgement

nps.gov

National Park Service
U.S. Department of the Interior

Thank you for your attendance!! (M)any Questions??