9th International conference on Carbonaceous Particles in the Atmosphere (ICCPA)

Light Absorption By Organic Carbon From Wood Combustion

Yanju Chen Tami C. Bond Christoph A. Roden University of Illinois at Urbana- Champaign

- Carbonaceous aerosols are a large fraction of both urban and global aerosol
 - Affect global radiative balance by scattering and absorbing light
 - Impacts on agriculture due to reduced sunlight
 - Effect on reflectivity of clouds

Source: http://www.pmel.noaa.gov/

WHY EXAMINE ABSORPTION BY ORGANIC CARBON

- Carbonaceous aerosol is composed of black carbon (BC) and organic carbon (OC).
- BC is the most absorbing aerosol, *BUT*.....
- OC has complex composition, and is estimated to be ten times more abundant than BC (10-70% of total fine aerosol mass)
- OC may also have significant absorption, which is greater at nearultraviolet and blue wavelength (around 400nm)
- This absorption would affect radiative transfer.
- Evidence for absorbing OC
 - Summarized by Andrae and Gelencser (2006), Sun et al (2007), and Bergstrom et al. (2007)
 - Measured by Bond et al. (2001), Kirchstetter et al. (2004), Roden et al. (2006)

3

WHY CHOOSE AEROSOL FROM BIOMASS BURNING

- Biofuels and open vegetative burning contribute a large amount of primary, combustion-related OC (~70%).
- Biofuels: wood, crop Open vegetative residue, charcoal used for burning: forests, Residentia heating and cooking fields, and savannas Biofuel Open vegetative Resider 19% burning Coal 42% Residential: Other 1% Transport: Nonroad 10% Transport: Road Electricity 12% generation Industry 0% 10% Source: Bond, Streets et al., JGR 109, D14203, doi:10.

http://www.flickr.com/photos/elmada/253979357/

http://www.thewe.cc/weplanet/news/forests/clock_ticking_for_indonesian_rainforest.htm

Motivation

- Generation type may affect optical properties of OC (fuel composition, fuel size, combustion conditions)
- Field observations:
 - Same fuel → different emission quantities & properties
 - Therefore, *combustion conditions* in addition to fuel composition affect emissions
- Ultimate goal: Parameterize OC emissions in terms of combustion and fuel type

- Isolate controlling variables of wood combustion, determine key governing factors to parameterize emission models.
- Provide optical properties of organic carbon
 emitted from wood combustion for use in radiative
 transfer models.

Generate samples in a laboratory combustor under different conditions

Wood type	Pine, oak
Wood size	$3/4" \times 1/4" \times 3/4"$ (S), $3/4" \times 3/4" \times 3/4"$ (M), $9/4" \times 3/4" \times 3/4"$ (L)
Initial burning temperature	200±5 ℃, 380±5 ℃, 500±5 ℃
Burning condition	Smoldering

- OC samples were collected on quartz filters for analysis.
- Extraction: polar and non-polar solvents (acetone, methanol, DI water and hexane)
- UV-Vis absorption measurement of extract solutions: Shimadzu UV-2401 UV-Vis recording spectrophotometer
- Total aerosol carbon: Sunset OC/EC analyzer
- Real-time absorption and scattering

SAMPLING SCHEMATIC

EXTRACTION

EXTRACTED FRACTIONS

Extracted fraction: methanol ≈ acetone (~95%) > water (73%) > hexane (52%) 10

ABSORPTION BY SOLVENT EXTRACTS

- Average single scattering albedo (green, 530nm): High 0.95-0.99
- Light absorption by water-soluble organic carbon smaller than that of organic carbon soluble in methanol or acetone.
- What is absorbing most light? Large molecular weight PAHs with some (but not many) functional groups containing oxygen.

Absorption by water-soluble vs water-insoluble

Different method: Sequential extraction

- Methanol (most of carbon)
- Water (water-soluble fraction only)
- Methanol following water (water-insoluble)

Absorption by water-soluble vs water-insoluble

Water-insoluble OC is much more absorbing than water-soluble OC!!!

What affects OC light absorption?

- Temperature at start of combustion?
- Wood size?
- Wood type?

INITIAL TEMPERATURE

- Higher temperature = highe absorption per mass
 (polymerization of volatile matter within wood)
- Especially for smaller size

Smallest dimension governs heat transfer in

Along-grain dimension governs residence time at temperature

because escaping volatile matter travels along grain

Pine, 200℃

17

Low T: Longer residence time in the large wood allows polymerization, resulting in greater absorption per mass.

Higher T: Polymerization occurs even without increased residence time.

Oak samples and 500°C samples have the same trend

WOOD TYPE (Soft wood vs. hard wood)

Large wood size samples

At the higher temperature $(500\Box)$ the absorption is identical.

wavelength (nm)

Pine emissions have lower absorption than oak at the medium temperature (380°C)

Medium size wood samples have the same trend

pine

oak

Absorption Ångström Exponent (Åap)

 $\alpha(\lambda_1)/\alpha(\lambda_2) = (\lambda_1/\lambda_2)^{-A_{ap}}$

Linear regression of $\ln(\alpha/\rho)$ against $\ln(\lambda)$, R² ranges from 0.989 to 1.000

Higher Åap values are associated with weakly absorbing particles

19

Absorption Ångström Exponent (Åap)

SUMMARY

- A large fraction of light absorption is attributable to waterinsoluble OC, which has some polar functional groups.
- Combustion temperature is the most important factor in determining the light absorption of primary OC.
 - Higher temperatures and longer residence time of volatile matter in wood create higher absorption.
- Higher Åap values are associated with weakly absorbing particles.

Acknowledgements to:

- Bond's Group members
- National Science Foundation

Thank you! Any Questions?

ABSORPTION PER MASS

Absorption per mass, α/ρ , is the absorption per mass of carbon *in bulk liquid*.

$$\alpha / \rho = \frac{A}{cL} \bullet \ln(10)$$

Where: α = absorption coefficient, cm⁻¹; ρ = density; **A**=absorbance obtained from UV-vis spectrophotometer, dimensionless; **c**=concentration of dissolved organic carbon in extract, g/mL; **L**=light path length, cm

To get absorption for use in models:

- Multiply by ρ
- Calculate imaginary refractive index ($k=\alpha\lambda/4\pi$)
- Use *k* and same density in Mie model

Sequential extraction

24

Wood Pyrolysis

- Complex fuel : cellulose, hemicellulose and lignin = (C₅H₇O₃) + trace elements
- = 100-200 °C
 - Endothermic
 - H2O, simple gases
- 200-280 °C
 - Weakly Endothermic
 - Char production favored
- 280-450 °C
 - Exothermic reaction dominate
 - Production of flammable volatiles
 - Cellulose -> tar
- > 450 °C
 - Only Char remains
 - Converted to CO and CO2

Wood combustion process

Evans and Milne, 1986

Carboxylic acid

Aromatic groups

