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Carbonaceous particles:
positive radiative forcing over snow

Smoke over the Canadian Arctic



Aerosol radiative forcing over (pure) snow
 TOA forcing

− Mixtures with SSA < 0.999 
(λ=500 nm) produce a 
positive TOA forcing

− Organic carbon: Positive
 Surface forcing

− Strong “dimming” from 
absorbing aerosols, but 
small forcing because of 
snow's high reflectance

− Multiple scattering between 
snow and aerosol layer

OC/BC emission ratios:
Biomass burning: ~10
Biofuel: ~6
Fossil Fuel: ~0.9

Extinction AOD=0.3
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Snow albedo perturbed by black carbon

1 gram of BC

 Why do ppb levels of BC perturb albedo?
− BC absorptivity is ~5 orders of magnitude > ice
− Snow scatters visible radiation efficiently via refraction

 A typical reflected green photon undergoes ~1000 scattering 
events before emerging from the top of the snowpack.

 Hence, photon path-length is large, and probability of 
encountering the rare BC particle is reasonable
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Aerosol radiative forcing over (dirty) snow
 Snow darkening:

− Increases TOA forcing
− Reverses the sign of net 

surface forcing
 Ratio of particle mixing 

ratio in snow to 
atmospheric column 
burden (α) is affected by 
many processes
− Deposition efficiency
− Meltwater removal from 

snow
− Mean estimate is 0.05
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Importance of snow grain size
 Snow exhibits large variability in grain size

− (30 < re < 2000 μm)
 Grain size determines pure snow albedo and the 

magnitude of perturbation by impurities

Three-fold variability in albedo 
reduction for a given mass of BC, 
depending on grain size
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Multiple positive feedbacks caused by 
impurities and snow aging
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Climate sensitivity experiments
 Equilibrium climate experiments with NCAR CAM 3 model 

[Collins et. al, 2006], coupled with the SNICAR model 
[Flanner et. al, 2007], BC+OC emissions [Bond, 2004]

 Global, annual-mean radiative forcing from BC in snow: 
~0.04-0.2 W/m2 [Hansen and Nazarenko, 2004; 
Jacobson, 2004; Flanner et. al, 2007]
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Springtime susceptibility to snow forcing
 Northern hemisphere insolation incident upon 

snowpack peaks during March-May
− Boreal spring is time of maximum snow-albedo feedback 

strength
 Goal: quantify relative effects on springtime climate of 

carbon dioxide, carbonaceous particles in atmosphere, 
and particles in snow
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Changes in spring snow cover

CO2

BC in 
snow only

BC+OC 
and CO2

BC+OC in 
atmosphere

Removal of 
FF+BF BC+OC 
in present 
climate

BC+OC in 
atmosphere and 
snow

- Eurasian springtime snow loss from BC+OC is comparable to that from CO2
- Large snow losses predicted with BC in snow, but not with BC+OC exclusively 
in atmosphere
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Observed springtime climate trends

 1979-2008 
warming rate over 
springtime Eurasia 
is +0.6°C / decade, 
whereas N. 
America trend is 
not significant

 Spring snow cover 
losses:
− Eurasia: 14%
− North America: 7%
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1979-2000 IPCC springtime hindcasts

Orange: IPCC AR4 coupled atmosphere-ocean simulations
Light blue: IPCC AR4 forced-SST (AMIP) simulations

Temperature trends Snow cover trends
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Springtime snow forcing from BC and dust

NCAR CAM model 
coupled with SNICAR 

 Spring snow-averaged surface forcing from 
BC+dust:
− Eurasia: 3.9 W/m2

− North America: 1.2 W/m2

− Not included in IPCC simulations
 BC emissions from Asia increased from ~1.6-2.6 

Tg/yr during 1980-2000 [Bond et al., 2007]
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1979-2000 IPCC springtime hindcasts

Orange: IPCC AR4 coupled atmosphere-ocean simulations
Light blue: IPCC AR4 forced-SST (AMIP) simulations
Dark blue: CAM/SNICAR without snow darkening
Green: CAM/SNICAR with snow darkening

Temperature trends Snow cover trends
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Spatial pattern of warming trends
W

ith
ou

t D
ar

ke
ni

ng

W
ith

 D
ar

ke
ni

ng

O
bs

er
va

tio
ns



16

Conclusions
 TOA forcing from any mixture of BC and OC is positive 

over snow
 Forcing from snow darkening exceeds that from 

“dimming”, yielding net positive surface forcing from 
carbonaceous particles over snow

 Equilibrium climate experiments: Similar reduction in 
Eurasian springtime snow cover from BC+OC as from CO2
− Snow darkening is dominant cause

 Springtime Eurasia has warmed much more rapidly than 
North America during last 30 years
− 21 of 22 IPCC AR4 models underpredict Eurasian springtime 

warming
− Snow darkening from BC and dust exerts 3-fold greater forcing 

on Eurasian snow than North American snow
 Improves temperature trend
 Snow cover trend is still underpredicted

 Aerosol forcing will become more negative as snow cover depletes
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