Snow-albedo feedback triggered by carbonaceous particles

Mark Flanner¹ Charlie Zender²

¹ National Center for Atmospheric Research, Boulder CO
 ² University of California at Irvine

ICCPA, Berkeley CA, August 14 2008

Carbonaceous particles: positive radiative forcing over snow

Smoke over the Canadian Arctic

Aerosol radiative forcing over (pure) snow

TOA forcing

- Mixtures with SSA < 0.999

 (λ=500 nm) produce a positive TOA forcing
- Organic carbon: Positive

Surface forcing

- Strong "dimming" from absorbing aerosols, but small forcing because of snow's high reflectance
- Multiple scattering between snow and aerosol layer

OC/BC emission ra	<u>tios:</u>
Biomass burning:	~10
Biofuel:	~6
Fossil Fuel:	~0.9

Snow albedo perturbed by black carbon

1 gram of BC

- Why do ppb levels of BC perturb albedo?
 - BC absorptivity is ~5 orders of magnitude > ice
 - Snow scatters visible radiation efficiently via refraction
 - A typical reflected green photon undergoes ~1000 scattering events before emerging from the top of the snowpack.
 - Hence, photon path-length is large, and probability of encountering the rare BC particle is reasonable

Aerosol radiative forcing over (dirty) snow

 Snow darkening: **Increases TOA forcing** Reverses the sign of net surface forcing Ratio of particle mixing ratio in snow to atmospheric column burden (α) is affected by many processes

- Deposition efficiency
- Meltwater removal from snow
- Mean estimate is 0.05

Importance of snow grain size

- Snow exhibits large variability in grain size
 (30 < r_e < 2000 μm)
- Grain size determines pure snow albedo and the magnitude of perturbation by impurities

Multiple positive feedbacks caused by impurities and snow aging

Concentration of hydrophobic and large impurities at the surface during melting

Climate sensitivity experiments

- Equilibrium climate experiments with NCAR CAM 3 model [Collins et. al, 2006], coupled with the SNICAR model [Flanner et. al, 2007], BC+OC emissions [Bond, 2004]
- Global, annual-mean radiative forcing from BC in snow: ~0.04-0.2 W/m² [Hansen and Nazarenko, 2004; Jacobson, 2004; Flanner et. al, 2007]

Springtime susceptibility to snow forcing

- Northern hemisphere insolation incident upon snowpack peaks during March-May
 - Boreal spring is time of maximum snow-albedo feedback strength
- <u>Goal</u>: quantify relative effects on springtime climate of carbon dioxide, carbonaceous particles in atmosphere, and particles in snow

Table 1. Model Experiments						
Experiment Case	CO ₂ (ppm)	FF+BF BC+OM ^a active in atm?	FF+BF BC active in snow?	BB BC and dust ^b active in snow?	Ocean / sea-ice Configuration	
$PI1^d$	289	no	no	no	slab	
PI2	380	no	no	no	slab	
PI3	289	yes	no	no	slab	
PI4	289	no	yes	no	slab	
PI5	289	yes	yes	no	slab	
PI6	380	yes	yes	no	slab	
PD1 ^e	380	yes	yes	yes	slab	
$PD2^{e}$	380	no	no	no	slab	

a Fossil fuel and biofuel black carbon and organic matter

^b Biomass burning black carbon and mineral dust

^d "PI" experiments have pre-industrial initial conditions

" "PD" experiments have present-day initial conditions

Changes in spring snow cover

BC+OC in atmosphere

BC+OC in atmosphere and snow

Removal of FF+BF BC+OC in present climate

Eurasian springtime snow loss from BC+OC is comparable to that from CO₂
 Large snow losses predicted with BC in snow, but not with BC+OC exclusively in atmosphere

Observed springtime climate trends

Temperature

1979-2008 warming rate over springtime Eurasia is +0.6°C / decade, whereas N. America trend is not significant

- Spring snow cover losses:
 - Eurasia: 14%
 - North America: 7%

1979-2000 IPCC springtime hindcasts

Temperature trends

IPCC AR4 coupled atmosphere-ocean simulations IPCC AR4 forced-SST (AMIP) simulations Orange: Light blue:

NOAA 1979-2000

NOAA 1979-2008

NOAA 1979-2000 NOAA 1979-2008

Springtime snow forcing from BC and dust

- Spring snow-averaged surface forcing from BC+dust:
 - Eurasia: 3.9 W/m²
 - North America: 1.2 W/m²
 - Not included in IPCC simulations
- BC emissions from Asia increased from ~1.6-2.6 Tg/yr during 1980-2000 [Bond et al., 2007]

NCAR CAM model coupled with SNICAR 13

1979-2000 IPCC springtime hindcasts

Temperature trends

Eurasia

North America

Orange: Light blue: Dark blue: Green: IPCC AR4 coupled atmosphere-ocean simulations IPCC AR4 forced-SST (AMIP) simulations CAM/SNICAR without snow darkening CAM/SNICAR with snow darkening

14

Spatial pattern of warming trends

With Darkening

Conclusions

- TOA forcing from any mixture of BC and OC is positive over snow
- Forcing from snow darkening exceeds that from "dimming", yielding net positive surface forcing from carbonaceous particles over snow
- Equilibrium climate experiments: Similar reduction in Eurasian springtime snow cover from BC+OC as from CO₂
 - Snow darkening is dominant cause
- Springtime Eurasia has warmed much more rapidly than North America during last 30 years
 - 21 of 22 IPCC AR4 models underpredict Eurasian springtime warming
 - Snow darkening from BC and dust exerts 3-fold greater forcing on Eurasian snow than North American snow
 - Improves temperature trend
 - Snow cover trend is still underpredicted
- Aerosol forcing will become more negative as snow cover depletes