# Measuring the chemical composition of soot containing particles

Achim M. Trimborn, Timothy B. Onasch, John T. Jayne, Sally Ng Leah Williams, Douglas R. Worsnop Aerodyne Research, Inc.

> Gregory L. Kok, Darrel Baumgardner Droplet Measurement Technologies

Eben Cross, Billy Wrobel, Adam Ahern, Paul Davidovits Boston College

**ICCPA August 2008** 

### Need for new soot particle instruments

- Black carbon (BC) particles
  - Absorb light efficiently, contributing to radiative forcing
  - Significant anthropogenic sources
- BC particles typically coated in the atmosphere
  - Primary combustion products
  - Secondary organic and inorganic condensates
  - Compositions and fate of BC containing particles are not well known
- Need new instruments capable of measuring the refractory and non-refractory mass, size and composition of soot containing particles

### Instrument concept

### • SP2 + AMS => SP2-AMS

SP2: Single Particle Soot Photometer (Droplet Measurement Technologies)

- little information on absorbed compounds, particle chemistry

AMS: Aerosol Mass Spectrometer (Aerodyne Research, Inc.)

- Lack of sensitivity to refractory particles (i.e. black carbon soot)

### SP2-AMS: new combined instrument

- Intracavity laser vaporization of the coatings and refractory cores of absorbing ( $\lambda = 1 \ \mu m$ ) particles
- Electron impact ionization
- Measures both the non-refractory components of the coatings (e.g. organics, sulfates, nitrates, etc.) and the refractory carbon cores (i.e. black carbon) via Time-of-Flight mass spectrometry

### SP2 (Single Particle Soot Photometer)

developed by DMT (Droplet Measurement Technologies)



- Measures incandescence from absorbing refractory components of particles (e.g. black carbon, metals, etc.)
- Measures scattered light from absorbing particles as the particles (coatings and core) evaporate

### **SP2** Calibration



SP2 incandescence is proportional to black carbon mass - independent of morphology and coating

Slowik et. al., 2007

### **AMS Schematic**



• Measures non-refractory aerosol chemical composition and mass

• Insensitive to refractory aerosol (e.g. black carbon)

### How to build a SP2-AMS



Remove vaporizer

### **SP2-AMS** schematic



Install SP2 module

### Schematic of the SP2-AMS module



- Absorbing particles (coating and core) vaporize in laser
- Vapor is ionized by electron impact ionization
- Detection of the ions by Time-of-Flight mass spectrometry
- Readily installed in any exiting AMS instrument

### Transit of Soot Particles Across Laser Beam

 5-20 microsecond evaporation time

 Coatings evaporate first at relatively low temperatures (<600°C) potentially dependent upon vapor pressures

• Core evaporates last at high temperature (>1000°C) under SP2-like incandescence conditions

 Coating and core material ionized and detected with mass spectrometry



### **Oil Lamp Soot Particles**



Obtain chemical information on elemental carbon clusters and organic compounds coating the soot cores

Signal

#### Size Distributions for uncoated and coated particles



Organics / 15

225 nm Glassy Carbon Spheres uncoated and coated with DEHS oil

> — Carbon Signal **Organic Signal**

Obtain chemical mass distribution information for both carbon and organic signals

 PTOF show size and particle mass signals increasing with particle coatings

### Coating Signals: DEHS Mass Spectra



- Less fragmentation in SP2-AMS than in AMS
- Large parent ion signal and fragmentation pattern more similar to NIST data base spectrum
- Most of the coating material evaporates at temperatures < 600°C



### 'Black Carbon' Chemical Composition

 $\overline{=}$ 



### **Ambient Measurements**



Ambient aerosol particles sampled by the SP2-AMS (red=carbon, green=organics, left axis) and the MAAP (black, right axis) in Chestnut Hill, MA.



SP2-AMS mass spectra for ambient particles (top panel) and for soot from an ethylene flame (bottom panel). Carbon clusters are shown in black and are spaced 12 m/z apart for m/z < 360 and 24 m/z apart for m/z >360. The inset shows the carbon isotopes for the C<sub>60</sub> cluster.

## **Quantification and Detection Limits**



- SP2 instruments operate at laser powers of ~2
- Higher laser powers required in SP2AMS due to faster particle velocities

 Total carbon signal is constant for different monodisperse soot particles



#### Soot Project 2 (July 7-25, 2008)

Aeroso Samoling Equipmen





### DMA Collison-type Atomize Sampling Line Condenser/Conditioner Exhaust Pump + F

Sooting Flame

Atomizer Generation

Diffusion Drier

 Twenty-six scientists operating 19 instruments (9 mass-based, 8 optically-based and 2 filter samples) and representing 12 institutions participated in the project

Humidifie

#### Highlights

- Particle shape determination as a function of fuel-to-air ratio and collapse observed due to coatings
- Characterization of several new instruments currently under development
  - Characterization of the physical and chemical properties of various types of
- 3 black carbon particles (including incandescence, fullerene content, surfacebound PAH, etc.)
- Mass specific absorption measurements as a function of fuel-to-air ratio and 4 carbon particle type
- Optical absorption enhancement measurements as a function of coatings 5
  - Wavelength-dependent measurements of absorption, scattering, and
- 6 extinction as a function of fuel-to-air ratio, particle coating, and relative humidity

## Summary

- SP2AMS: Successfully adapted SP2 module into AMS
  - Separate volatilization and ionization mechanisms
  - Only sensitive to absorbing particles (soot or metals)
  - Chemical and size information obtain for elemental carbon cores and nonrefractory organic coatings
- Measure of organic coating mass and size
  - Shows less fragmentation than standard AMS spectra
- Measure of particulate elemental carbon mass and size
  - Provides chemical information on 'black carbon' particles
  - Linear correlation between MAAP absorption and carbon cluster ion signals from SP2-AMS for several different types of soot particles
  - Fully vaporizes 160 nm (~1 fg) soot particles under higher laser powers
- Quantification studies have been carried out and are being analyzed
  - Boston College Aerodyne Soot Project 2

#### Department of Energy (DOE) SBIR