Towards a reference material for soot/LAC measurement: Evaluation of candidates with electron microscopy, SP2 and TOA

R Subramanian, Gregory Kok – *Droplet Measurement Technologies*Darrel Baumgardner – *Universidad Nacional Autónoma de México*O Popovicheva, E Kireeva, S Natalia, V Elena, K Tatiana – *Moscow St. U.*Robert Cary and Benjamin Cary – *Sunset Laboratories*Thomas Kirchstetter – *Lawrence Berkeley National Laboratory*

9th International Conference on Carbonaceous Particles in the Atmosphere

August 2008

Acknowledgments

Civilian Research and Development Fund

Motivation

- Strongly light-absorbing carbon (LAC)/soot an important player in climate change, air quality, health effects and visibility
- LAC measurements often operationallydefined
 - Thermal-optical methods can produce 2x different results
- Lack of reference material impeding progress on understanding method biases

LAC reference material: requirements

- Known composition and density
- Well-characterized shape
 - Helps correctly identify mass of particles selected through a DMA
- Physical characteristics similar to LAC
 - Refractory
 - Optical properties
- Manufacturing:
 - Reproducible size distribution, easily obtained
 - Size-controlled (monodisperse) production
- Usability:
 - Stable over extended periods of time
 - Dispensable (easily mixes with water)
- Previous work: Black Carbon Steering Committee
 - http://www.geo.unizh.ch/phys/bc/
 - n-hexane soot
 - Wood and grass chars

Candidates

- Glassy carbon
 - Alfa Aesar©, Tokai©
- Fullerene soot
 - Alfa Aesar©
- Acheson Aquadag©
- Graphitized thermal soot (GTS)
 - Moscow State University
- Diffusion flame-generated ("Magic") soot
 - Lawrence Berkeley National Laboratory

Magic soot: All EC

Kirchstetter & Novakov, "Evaluating and Improving Measurements of Black Carbon." American Geophysical Union, 2007.

GTS composition: ~100% EC

Identifying LAC with the SP2

Reference materials and combustion (magic) soot behave similarly in the SP2

hick black curve: Magic soot

Magic soot

Untreated soot*

Soot, oxidized and exposed to water

(*Top two TEM Images courtesy of Randy VanderWal (NASA Glen Research Center), from Kirchstetter & Novakov, "Evaluating and Improving Measurements of Black Carbon." AGU 2007.)

Soot-like aggregates, spherules and agglomerated spherules

Alfa glassy carbon

Fullerene soot: 400 & 110 nm

Tokai GC: solubilized & air-blown

Aquadag (contaminated?)

Graphitized thermal soot (GTS)

Popovicheva et al. (2008)

Reference material density

- Tokai GC: 1.85 g/cm³
- Alfa GC: 1.42 g/cm³
- Fullerene soot: ?
- Aquadag: 1 g/cm³? (mobility density)
 - Not specified by manufacturer
- Graphitized thermal soot (GTS): ~2 g/cm³?
 - assuming density of graphite
- Magic soot: ~1.9 g/cm³?
 - assuming density of fresh LAC
- Material density not the same as mobility density
 - Hard spherical particles are OK (like *individual* glassy carbon particles)
 - Fractal agglomerates may have a different effective density in a DMA due to non-spherical shape factors

Comparing Aquadag, GTS80, magic soot and fullerene soot

Fullerene soot and Regal carbon black (BC/Aerodyne Soot Project 2)

Measured soot masses ~0.4 to 3.4 fg-LAC

(F)

Organic-coated GTS: Soot standard?

GTS80 + 4.88% 1,2,4-benzene tricarboxylic acid

Summary

- Magic soot and GTS are ~100% EC
 - GTS can be coated with organic matter as a "soot" proxy
- All materials behave like LAC in the SP2
- Glassy carbon and GTS have spherical/spheroidal shape
 - good for DMA size selection (mass is known)
 - Fullerene soot, Aquadag, magic soot are more fractal, so DMAselected mass not certain
- Aquadag behaves nicely in DMA, over a wide range of mobility diameters (0.5 – 100 fg)
- Need to confirm mobility density of fullerene soot, GTS, magic soot and Aquadag
 - DMA/SP2 response differentiated only by mobility density
- Need to test optical properties of most materials
 - Previously, tests have shown discrepancies between PSAP and PASS absorption for GTS
 - GTS microstructure similar to graphite, so optical properties could be similar to graphite
 - Magic soot is freshly-generated LAC

Do the candidates meet our requirements?

Requirement	Alfa GC	Tokai GC	Fullerene soot	Aquadag	GTS	Magic soot
Shape (for DMA)						nt
Density (mobility)	+	+	+	+	+	+
Size distribution	+		+	+		†
Monodisperse						
Long-term stability						
Water dispersion			+		+	
Optical properties	nt	nt	nt	nt	+	
SP2 behavior	+	+	+	+	+	+
OC/EC	nt	nt	nt	nt	EC	EC†

[†]Kirchstetter and Novakov, *Atmos. Env.*, **41** (2007). Good; + further testing needed; nt: not tested

Extra slides follow

Calibration of SP2 using Aquadag and fullerene soot

Production of Elemental Carbon Reference Material

• Production of well-graphitized structure, perfect chemically uniform surface.

Alfa fullerene soot: soot-like aggregates

DMA @ 400 nm

DMA @ 110 nm

Tokai glassy carbon: spherules and agglomerates

Tokai 200 nm

Tokai 200 nm, not solubilized

Alfa glassy carbon: single spheres and agglomerates

Acheson Aquadag: more aggregates like soot, but contaminated sample?

Measurement Instrumentation

- Single Particle Soot Photometer (SP2)
 - --Individual particle mass measurement
- Thermal/Optical
 - --elemental carbon/organic carbon
- Photoacoustic
 - --in-situ particulate light absorption converted to mass
- Filter collection (aethelometer, PSAP, MAAP)
 - --light absorption converted to mass